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Abstract
A geometric approach to the equation found by Hietarinta and Viallet, which
satisfies the singularity confinement criterion but exhibits chaotic behaviour, is
presented. It is shown that this equation can be lifted to an automorphism of
a certain rational surface and can therefore be considered to be the action of
an extended Weyl group of indefinite type. A method to calculate its algebraic
entropy by using the theory of intersection numbers is presented.

PACS number: 0230I

1. Introduction

The singularity confinement method has been proposed by Grammaticos et al [1] as a criterion
for the integrability of (finite- or infinite-dimensional) discrete dynamical systems. The
singularity confinement method demands that even if singularities appeared due to particular
initial values, such singularities would have to disappear after a finite number of iteration steps
and that the information on the initial values can be recovered (hence the dynamical system
has to be invertible).

However ‘counter-examples’ were found by Hietarinta and Viallet [2]. These mappings
satisfy the singularity confinement criterion, but the orbits of their solutions exhibit chaotic
behaviour. The authors of [2] introduced the notion of algebraic entropy in order to test
the degree of complexity of successive iterations. The algebraic entropy is defined as
s = limn→∞ log(dn)/n, where dn is the degree of the nth iterate. This notion is linked
with Arnold’s complexity, since the degree of a mapping gives the intersection number of
the image of a line and a hyperplane. While the degree grows exponentially for a generic
mapping, it was shown that it grows only in the polynomial order for a large class of integrable
mappings [2–5].

Many discrete Painlevé equations were found by Ramani et al [6, 7] and have been
extensively studied. Recently it was shown by Sakai [8] that all of these (from the point
of view of symmetries) are obtained by studying rational surfaces in connection with the
extended affine Weyl groups. Surfaces obtained by successive blow-ups [9] of P

2 or P
1 × P

1

have been studied by several authors in the theory of birational mappings with invariants of
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finite (=m in the case of P
2 and =m − 1 in the case of P

1 × P
1, 1 � m � 8) point sets in a

rational surface connected to the Weyl groups [10–12]. Looijenga [13] and Sakai studied the
case of m = 9, in which case the birational mappings are connected with the extended affine
Weyl groups and are obtained as Cremona transformations. Discrete Painlevé equations are
recovered as particular cases.

Our aim in this Letter is to characterize one of the mappings found by Hietarinta and
Viallet from the point of view of the theory of rational surfaces. As its space of initial values,
we obtain a rational surface associated with some root system of indefinite type. Conversely
we recover the mapping from the surface and consequently obtain an extension of mapping
to its non-autonomous version. By considering the intersection numbers of divisors, we also
present a method to calculate the algebraic entropy of a mapping. It is shown that the degree of
the mapping is given by the nth power of a matrix which is given by the action of the mapping
on the Picard group.

2. Construction of the space of initial values by blow-ups

We consider the dynamical system written by the birational map ϕ : P
1 × P

1 → P
1 × P

1

(xn, yn) �→ (xn+1, yn+1) = (yn,−xn + yn + a/y2
n) (1)

where a ∈ C is a nonzero constant. This equation was found by Hietarinta and Viallet [2]
and we call it the HV equation. To test the singularity confinement, let us assume x0 �= 0
and y0 = ε where |ε| 
 1. With these initial values singularities appear at n = 1 as ε → 0
and disappear at n = 4. In this case the information on the initial values is hidden in the
coefficients of higher degree ε. However, taking suitable rational functions of xn and yn we
can find the information of the initial values as finite values. The fact that the leading orders
of (x2

1y1 − a)y1, (x3
2(y2/x2 − 1)2 − a)x2 and (x3y

2
3 − a)x3 become −ax0, −ax0 and −ax0

actually suggests that the HV equation can be lifted to an automorphism of a suitable rational
surface, although of course these rational functions are not uniquely determined.

Let the coordinates of P
1×P

1 be (x, y), (x, 1/y), (1/x, y) and (1/x, 1/y) and let x = ∞
denote 1/x = 0. We consider the inverse mapping of the HV equation

ϕ−1 : (x, y) �→ (x, y) = (−y + x + a/x2, x) (2)

where (x, y) means the image of (x, y) by the mapping. This mapping has two indeterminate
points: (x, y) = (0,∞), (∞,∞). We denote blowing up at (x, y) = (x0, y0) ∈ C

2 by

(x, y)← (x − x0, (y − y0)/(x − x0)) ∪ ((x − x0)/(y − y0), y − y0). (3)

By blowing up at (x, y) = (x0, y0), (x − x0)/(y − y0) takes meaning at this point.
First we blow up at (x, y) = (0,∞), (x, 1/y)← (x, 1/xy) ∪ (xy, 1/y), and denote the

obtained surface by X0. Then ϕ−1 is lifted to a rational mapping from X0 to P
1 × P

1. For
example, in the new coordinates ϕ−1 is expressed as

(u1, v1) := (x, 1/xy) �→ (x, y) = ((−u1 + u3
1v1 + av1)/(u

2
1v1), u1)

(u2, v2) := (xy, 1/y) �→ (x, y) = ((−u2
2v2 + u3

2v
3
2 + a)/(u2

2v
2
2), u2v2)

where u1 = 0 and v2 = 0. This maps the exceptional curve at (x, y) = (0,∞) almost to
(x, y) = (∞, 0) but has an indeterminate point on the exceptional curve: (u1, v1) = (0, 0).
Hence we have to blow up again at this point. In general it is known that, if there is a rational
mapping X → Y where X and Y are smooth projective algebraic varieties, the procedure of
blowing up can be completed in a finite number of steps, after which one obtains a smooth
projective algebraic variety X1 such that the rational mapping is lifted to a regular mapping
from X1 to Y (theorem of the elimination of indeterminacy [9]).
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Here we obtain the following sequence of blow-ups (for simplicity we take only one
coordinate of (3)):

(x, y)
at (0,∞)←−−−−

E5

(
x,

1

xy

)
(0,0)←−−−−
E6

(
x2y,

1

xy

)
(a,0)←−−−−
E7

(
xy(x2y − a),

1

xy

)
(0,0)←−−−−
E8

(
x2y2(x2y − a),

1

xy

)

(x, y)
(∞,∞)←−−−−

E9

(
1

x
,
x

y

)
(0,1)←−−−−
E10

(
1

x
, x

(
x

y
− 1

))
where the Ei mean the total transforms generated by the blow-ups. Of course the sequence
above is not unique, since there is freedom to choose the coordinates.

We have obtained a mapping from X1 to P
1 × P

1 which is lifted from ϕ−1, but our aim is
to construct a rational surface X such that ϕ−1 is lifted to an automorphism of X. If this can
be achieved, X is considered to be the space of initial values in the sense of Okamoto [14],
where a sequence of rational surfaces Xi is (or Xi themselves are) called the space of initial
values for a sequence of rational mappings ϕi if each ϕi is lifted to an isomorphism from Xi

to Xi+1 for all i.
First we construct the rational surface X2 such that ϕ−1 is lifted to a regular mapping from

X2 to X1. For this purpose it is sufficient to eliminate the indeterminacy of mapping from X1

to X1. Consequently we obtain X2 defined by the following sequence of blow-ups:(
1

x
, x

(
x

y
− 1

))
(0,0)←−−−−
E11

(
1

x2(x/y − 1)
, x

(
x

y
− 1

))

(0,0)←−−−−
E12

(
1

x2(x/y − 1)
, x3

(
x

y
− 1

)2
)

(0,a)←−−−−
E13

(
1

x2(x/y − 1)
, x2

(
x

y
− 1

)(
x3

(
x

y
− 1

)2

− a

))

(0,0)←−−−−
E14

(
1

x2(x/y − 1)
, x4

(
x

y
− 1

)2
(
x3

(
x

y
− 1

)2

− a

))
.

Next eliminating the indeterminacy of mapping from X2 to X2, we obtain X3 defined by
the following sequence of blow-ups:

(x, y)
(∞,0)←−−−−
E1

(
1

xy
, y

)
(0,0)←−−−−
E2

(
1

xy
, xy2

)
(0,a)←−−−−
E3

(
1

xy
, xy(xy2 − a)

)
(0,0)←−−−−
E4

(
1

xy
, x2y2(xy2 − a)

)
.

Here, it can be shown that the mapping from X3 to X3 which is lifted from ϕ−1 does
not have any indeterminate points and has an inverse (the mapping lifted from ϕ). Hence we
obtain the following theorem.

Theorem 2.1. The HV equation (1) can be lifted to an automorphism of X(=X3).

3. Action on the Picard group

We denote the total transform of x = constant (or y = constant) on X by H0 (or H1

respectively) and the total transforms of the points subjected to blow-up by E1, E2, . . . , E14.
It is known [9] that the Picard group of X, Pic(X), is

Pic(X) = ZH0 + ZH1 + ZE1 + · · · + ZE14
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x
y y = 0

x = 0

x = inf

y = inf

Figure 1.

and the canonical divisor of X, KX, is

KX = −2H0 − 2H1 + E1 + · · · + E14.

It is also known that the intersection numbers of Hi or Ek and Hj or El are

Hi ·Hj = 1− δi,j Ek · El = −δk,l Hi · Ek = 0 (4)

where δi,j is 1 if i = j and 0 if i �= j .
We denote the proper transforms, i.e. prime divisors, on X by

H0, H1(0 curve (the self-intersection number is 0)) :

C0 := E4 C1 = E8 C2 := E14 C3 := H0 − E5 C4 := H1 − E1 (−1 curve)

D0 := E1 − E2 D1 := E2 − E3 D2 := E3 − E4 D3 := E5 − E6 D4 := E6 − E7

D5 := E7 − E8 D6 := E9 − E10 D7 := E11 − E12 D8 := E12 − E13

D9 := E13 − E14 (−2 curve)

D10 := H0 − E1 − E2 − E9 D11 := H1 − E5 − E6 − E9

D12 := E10 − E11 − E12 (−3 curve)

as in figure 1. The intersection numbers of any pairs of divisors are given by linear combinations
of these divisors.

The anti-canonical divisor −KX can be reduced to the distinct irreducible curves
D0,D1, . . . , D12 and the connection of Di is expressed by the following Dynkin diagram:

The HV equation (1) acts on curves as

(D0,D1,D2,D3,D4,D5,D6,D7,D8,D9,D10,D11,D12, C0, C1, C2)

→ (D5,D4,D3,D7,D8,D9,D6,D0,D1,D2,D11,D12,D10, C3, C2, C0) (5)
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and C4 �→ C1. Hence the HV equation acts on Pic(X) as


H0

H1, E1, E2

E3, E4, E5, E6

E7, E8, E9, E10

E11, E12, E13, E14


→




3H0 + H1 − E5 − E6 − E7 − E8 − E9 − E10

H0, H0 − E8, H0 − E7

H0 − E6, H0 − E5, E11, E12

E13, E14, H0 − E10, H0 − E9

E1, E2, E3, E4


 (6)

(this table means H0 = 3H0 +H1−E5−E6−E7−E8−E9−E10, H1 = H0, E1 = H0−E8

and so on) and their linear combinations. As we will see in section 6, the action (6) provides
a method to calculate the algebraic entropy of the HV equation.

4. An extended Weyl group acting on the Picard group

We shall decompose the action of the HV equation on Pic(X) as a product of actions of order
two elements of what turns out to be an extended Weyl group. Let us define the actions
σ1, σ2, w1, w2, w3 on Pic(X) as follows (see figure 1) (for simplicity we have not written the
invariant elements under each action):

σ1 :

(
H0, H1, E1, E2, E3

E4, E5, E6, E7, E8

)
→
(
H1, H0, E5, E6, E7

E8, E1, E2, E3, E4

)

σ2 :

(
H1, E1, E2

E3, E4, E9, E10

E11, E12 E13, E14

)
→
(
H0 + H1 − E9 − E10, E11, E12

E13, E14, H0 − E10, H0 − E9

E1, E2, E3, E4

)

w1 :

(
H0,

E1, E2, E3, E4

)
→
(

H0 + 2H1 − E1 − E2 − E3 − E4

H1 − E4, H1 − E3, H1 − E2, H1 − E1

)

w2 :

(
H1,

E5, E6, E7, E8

)
→
(

2H0 + H1 − E5 − E6 − E7 − E8

H0 − E8, H0 − E7, H0 − E6, H0 − E5

)

w3 :

(
H0, H1, E9, E10

E11, E12, E13, E14

)
→
(

H0 + α3, H1 + α3, E9 + α3, E10 + α3

E11 + α1
3, E12 + α2

3, E13 + α2
3, E14 + α1

3

)

(7)

where α1
3 = H0 + H1 − E9 − E10 − E11 − E14, α2

3 = H0 + H1 − E9 − E10 − E12 − E13 and
α3 = α1

3 + α2
3 .

Then (6) becomes w2 ◦ σ2 ◦ σ1 and the following relations hold:

w2
i = σ 2

j = 1 (σ1σ2)
3 = 1

σ1w1 = w2σ1 σ1w2 = w1σ1 σ1w3 = w3σ1

σ2w1 = w3σ2 σ2w2 = w2σ2 σ2w3 = w1σ2.

(8)

The basis of the root system. Let us define α1, α2 α3 ∈ Pic(X) as

α1 = 2H1 − E1 − E2 − E3 − E4

α2 = 2H0 − E5 − E6 − E7 − E8

α3 = 2H0 + 2H1 − 2E9 − 2E10 − E11 − E12 − E13 − E14.

(9)

It is satisfied that αi ·Dj = 0 for all j . The actions of σj and wk are

σj (αi) and wk(αi)

σ1 σ2 w1 w2 w3

α1 �→ α2 α3 −α1 α1 + 2α2 α1 + 2α3

α2 �→ α1 α2 α2 + 2α1 −α2 α2 + 2α3

α3 �→ α3 α1 α3 + 2α1 α3 + 2α2 −α3

(10)
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The action of wi can be written in the form wi(αj ) = αj−cijαi where cij = 2(αi ·αj )/(αi ·αi).
Its Cartan matrix and Dynkin diagram are of the indefinite type H

(3)
71 [15]:

[ 2 −2 −2
−2 2 −2
−2 −2 2

]
and . (11)

Hence it is seen [16] that the group of actions on Pic(X) generated by wi and σi coincides
with the extended (including the full automorphism group of the Dynkin diagram) Weyl group
of an indefinite type generated by

〈w1, w2, w3, σ1, σ2〉 (12)

and the fundamental relations (8). From this fact we have the following theorem.

Theorem 4.1. The HV equation as the action of w2σ2σ1 on Pic(X) does not commute with
any element of the group generated by wi and σi except (w2σ2σ1)

m.

5. The inverse problem

A birational mapping on a rational surface is called a Cremona transformation. One method for
obtaining a Cremona transformation (which exchanges a certain pair of exceptional curves)
is to interchange the blow-down structures. Following this method, we can construct the
Cremona transformations which yield the extended Weyl group (12) and thereby recover the
HV equation from its action on Pic(X).

These Cremona transformations are lifted to automorphisms of Pic(X) but do not have
to be lifted to automorphisms of X itself, i.e. the blow-up points can be changed without
however changing the intersection numbers (we consider isomorphisms from X to X′, where
X and X′ may have different blow-up points). In order to do this, one has to consider not only
autonomous but also non-autonomous mappings. By a0, a1, a2, a3, a4, a5, a6, a7, we denote
the point where each E10, E3, E4, E7, E8, E11, E13, E14 is generated by the blow-up (or its
value of the coordinate).

Consequently, it can been seen that w2 is written as w2 = t ◦ w′2, where w′2 : (x, y) �→
(x, y − a3/x

2 − a4/(a3x)), and t is a certain automorphism of P
1 × P

1. By taking suitable
t , we can assume that the points of first, fifth and ninth blow-up are fixed, a0 = a0 = 1 and
a5 = a5. For the remaining points there are no such a priori requirements and there evolution
under the present isomorphism should be calculated in detail. For example, under the above
assumptions, w2 can be seen to reduce to

w2 : (x, y; a1, a2, a3, a4, a5, a6, a7) �→ (x, y; a1, a2, a3, a4, a5, a6, a7)

=
(
x, y − a3

x2
− a4

a3x
; a1, a2 − 2a1a4

a3
,−a3, a4, a5, a6, a7 +

2a4a6

a3

)
. (13)

Here, in the calculation of the next iteration step we have to use a3 = −a3 instead of a3.
Similarly σ1 and σ2 reduce to

σ1 : (x, y; a1, a2, a3, a4, a5, a6, a7) �→ (−y,−x;−a3,−a4,−a1,−a2, a5,−a6, a7 − 4a2
5a6)

and

σ2 : (x, y; a1, a2, a3, a4, a5, a6, a7) �→ (x, x − y − a5;
a6, a7 − 2a2

5a6,−a3, a4, a5, a1, a2 + 2a1a
2
5).
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Non-autonomous HV equation. The composition w2σ2σ1 reduces to

w2 ◦ σ2 ◦ σ1 : (x, y; a1, a2, a3, a4, a5, a6, a7) �→
(
− y, x − y − a5 − a1

y2
− a2

a1y
;

−a6, a7 − 2a2
5a6 − 2a2a6

a1
,−a1,−a2, a5,−a3,−a4 − 2a3a

2
5 +

2a2a3

a1

)
. (14)

Of course this mapping satisfies the singularity confinement criterion by construction and in
the case of a2 = a4 = a5 = a7 = 0 and a1 = a3 = a6 = a it coincides with the HV
equation (1) except their signs. The difference between them comes from the assumption
a5 = a5. Assuming a5 = −a5 by w2, σ2 and σ1, we have another form of (14)

w2 ◦ σ2 ◦ σ1 : (x, y; a1, a2, a3, a4, a5, a6, a7) �→
(
y,−x + y + a5 +

a1

y2
+

a2

a1y
;

a6,−a7 + 2a2
5a6 +

2a2a6

a1
, a1, a2,−a5, a3, a4 + 2a3a

2
5 −

2a2a3

a1

)
. (15)

Actually in the case of a2 = a4 = a5 = a7 = 0 and a1 = a3 = a6 = a it coincides with the
HV equation (1).

6. Algebraic entropy

In this section we consider the algebraic entropy which has been introduced by Hietarinta
and Viallet to describe the complexity of rational mappings [2]. The degree of a rational
function P(x, y) = f (x, y)/g(x, y), where f (x, y) and g(x, y) are polynomials and P(x, y)

is irreducible, is defined by

deg(P ) = max{deg f (x, y), deg g(x, y)}
where deg(xmyn) = m + n. The degree of the mapping ϕ : (x, y) �→ (P (x, y),Q(x, y)),
where P(x, y) and Q(x, y) are rational functions, is defined by

deg(ϕ) = max{degP(x, y), degQ(x, y)}.
The algebraic entropy of the map ϕ : (x, y) �→ (P (x, y),Q(x, y)) is defined by

lim
n→∞

1

n
log deg(ϕn)

if the limit exists. The definition of algebraic entropy of ϕ coincides with the definition for
the case where ϕ is a rational mapping from P

2 → P
2. It is known [2] that the algebraic

entropy of the HV equation becomes log(3 +
√

5)/2. We recover the algebraic entropy of the
HV equation by using the theory of intersection numbers.

Let us define the curve D in X as y/x = c, where c ∈ C is a nonzero constant. We
denote the HV equation by ϕ and (xn, yn) by (Pn(x0, y0),Qn(x0, y0)). By the fundamental
theorem of algebra, degt (Pn(t, ct))(= deg(Pn(x, y)) for c �= 1) coincides with the intersection
number of the curve x = Pn(t, ct) and the curve x = d in P

1 × P
1, where degt (P (t)) is the

degree of the rational function of one variable P(t) and d ∈ C is a nonzero constant. It also
coincides with the coefficient of H1 as an element of Pic(X). (Analogously the intersection
number of the curves related to Q coincides with the coefficient of H0.) The curve D is
expressed as H0 + H1 − E9 in Pic(X) if c �= 1. Hence writing the coefficients of H0 and H1

of ϕn(H0 + H1 − E9) as h0
n, h

1
n, we obtain the formulae

deg(Pn) = h1
n deg(Qn) = h0

n.
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The action of ϕ on Pic(X) is given by (6). Hence the algebraic entropy of the HV equation
becomes limn→∞ 1

n
log max{h0

n, h
1
n}. In this case we have

log max{| eigenvalues of ϕ|} = log
3 +
√

5

2
.

The proof of the theorems contained in this Letter as well as some other mappings, which
satisfy the singularity confinement criterion but which have positive algebraic entropy, will be
discussed in a forthcoming paper.

The author would like to thank H Sakai, J Satsuma, T Tokihiro, A Nobe, T Tsuda, M Eguchi
and R Willox for discussions and advice.
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